Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 198-201, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194527

RESUMO

The spin and orbital angular momentum (namely SAM and OAM) mode division provides a promising solution to surmount exhausted available degrees of freedom in conventional optical communications. Nevertheless, SAM and OAM are often subjected to the degeneracy of total angular momentum (AM) because they both have integer variables of quantum eigenstates, which inevitably brings about the shortcomings specific to limited signal channels and multiplexing cross talk. Herein, we present a nanoplasmonic metachain that can discriminatively couple any input SAM and OAM components to an extrinsic orbital AM, corresponding to the chirality and topological charge of incident light. Importantly, the unambiguous measurement has a prominent advantage of detecting the arbitrary AM component rather than the total AM. The miniature metadevice offers the possibility of harnessing AM division on chip or in fiber and holds great promise to delve the spin-orbit interactions for topological photonics and quantum cryptography.

2.
Adv Mater ; 35(44): e2304386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37462401

RESUMO

Metasurfaces consisting of planar subwavelength structures with minimal thickness are appealing to emerging technologies such as integrated optics and photonic chips for their small footprint and compatibility with sophisticated planar nanofabrication techniques. However, reduced dimensionality due to the 2D nature of a metasurface poses challenges to the adaptation of a few useful methods that have found great success with conventional optics in 3D space. For instance, Bragg diffraction is the foundation of the well-established technique of phase-coded multiplexing in volume holography. It relies on interference among the scattered waves from multiple layers across the thickness of a sample. In this work, despite losing the dimension in thickness, a metasurface is devised to experimentally demonstrate phase-coded multiplexing by replacing free-space light with a surface wave in its output. The in-plane interference along the propagation of the surface wave resembles the Bragg diffraction, thus enabling phase-coded multiplexing in the 2D design. An example of code-based all-optical routing is also achieved by using a multiplexed metasurface, which can find applications in photonic data processing and communications.

3.
Adv Mater ; 35(32): e2302468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207692

RESUMO

As basic optical elements, waveplates with anisotropic electromagnetic responses are imperative for manipulating light polarization. Conventional waveplates are manufactured from bulk crystals (e.g., quartz and calcite) through a series of precision cutting and grinding steps, which typically result in large size, low yield, and high cost. In this study, a bottom-up method is used to grow ferrocene crystals with large anisotropy to demonstrate self-assembled ultrathin true zero-order waveplates without additional machining processing, which is particularly suited for nanophotonic integration. The van der Waals ferrocene crystals exhibit high birefringence (Δn (experiment) = 0.149  ±  0.002 at 636 nm), low dichroism Δκ (experiment) = -0.0007 at 636 nm), and a potentially broad operating range (550 nm to 20 µm) as suggested by Density Functional Theory (DFT) calculations. In addition, the grown waveplate's highest and the lowest principal axes (n1 and n3 , respectively) are in the a-c plane, where the fast axis is along one natural edge of the ferrocene crystal, rendering them readily usable. The as-grown, wavelength-scale-thick waveplate allows the development of further miniaturized systems via tandem integration.

4.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35512705

RESUMO

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Assuntos
Organogênese , Transcriptoma , Animais , DNA/genética , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Camundongos , Organogênese/genética , Gravidez , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
5.
J Biomed Opt ; 20(10): 105011, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26502229

RESUMO

Phase matching of backward second harmonic generation (SHG) in a periodic structure of collagen fibrils is investigated through theoretical modeling, simulation, and experiments. The lattice structure of collagen fibrils is considered to provide a virtual momentum for assisting the phase matching of backward SHG. Phase matching over a relatively wide excitation wavelength range is achieved by tilting the angle of the fundamental excitation and SHG wave vectors. The SHG intensity in the periodic structure is simulated to quantify the phase matching effect. The effect of the fundamental excitation and the SHG emission angles on the peak excitation wavelength of the SHG excitation spectrum is further validated in experiments, where the excitation and emission angles are controlled by spatial filtering. It is found that an optimized excitation wavelength exists for a certain collagen fibril structure, which shifts toward a shorter wavelength when the excitation and emission angles are increased. Our results show that the lattice structure of collagen fibrils can assist the phase matching, providing a mechanism for generating backward SHG in multiphoton microscopy.


Assuntos
Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Biológicos , Imagem Molecular/métodos , Simulação por Computador , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Biomed Opt ; 18(11): 115003, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24194063

RESUMO

The backward second harmonic generation (SHG) in mouse tissues is studied with a confocal multiphoton microscopy system. The total backward collected SHG (B-SHG) consists of the backward generated SHG and the backward-scattered forward-generated SHG (BS-SHG), which can be modeled by a Gaussian and a uniform distribution, respectively, at the confocal pinhole plane. By varying the pinhole size with a series of collection fibers, the proportion of the BS-SHG to the B-SHG and the proportion of BS-SHG to the forward generated SHG can be obtained. The approach is first validated by Monte Carlo simulation. It is then applied to two types of mouse tissues: mouse tail tendon and Achilles tendon. It is found that the BS-SHG contributes less to the B-SHG for the tail tendon than Achilles tendon with thicknesses of ~300 µm. With the thickness of the Achilles tendon tissue increased to 1000 µm but the focal plane kept at the same depth, as high as ~10% of the total forward SHG is backscattered and collected. The results indicate that BS-SHG may not be the major source of B-SHG in the tail tendon, but it may be the major source in the Achilles tendon. These methods and results provide a noninvasive method and supporting information for investigating the generation mechanism of SHG and help with optimizing backward SHG microscopy and spectroscopy measurements.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Processamento de Sinais Assistido por Computador , Tendão do Calcâneo/química , Acústica , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Método de Monte Carlo , Cauda/química , Tendões/química
7.
J Biomed Opt ; 18(3): 031109, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396547

RESUMO

Although second harmonic generation (SHG) imaging has emerged as a powerful tool for imaging biological tissues with submicron resolution, the excitation wavelength dependence of SHG intensity in biological tissues is an optical property that is not fully understood so far. We first calibrate system factors which may potentially affect the accuracy of the wavelength-dependent SHG measurement. Then our calibration is validated by measuring the wavelength dependence of SHG signal from a BaB2O4 crystal under different focusing conditions and comparing with the theoretical calculations. The good agreement between the experimental results and theoretical calculations demonstrates that we have established a reliable method to validate wavelength-dependent SHG measurement over a broad wavelength range. We also investigate the wavelength dependence of a 10-µm thick mouse tendon tissue in both forward and backward directions. It is found that SHG of mouse tendon tissue decreases monotonically for excitation from 750 to 950 nm.


Assuntos
Compostos de Bário/química , Boratos/química , Imagem Óptica/métodos , Processamento de Sinais Assistido por Computador , Animais , Calibragem , Cristalização , Camundongos , Tendões/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...